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Explicit algebraic stress models that are valid for three-dimensional turbulent flows in 
non-inertial frames are systematically derived from a hierarchy of second-order closure 
models. This represents a generalization of the model derived by Pope (1975) who 
based his analysis on the Launder, Reece & Rodi model restricted to two-dimensional 
turbulent flows in an inertial frame. The relationship between the new models and 
traditional algebraic stress models - as well as anisotropic eddy viscosity models - 
is theoretically established. A need for regularization is demonstrated in an effort to 
explain why traditional algebraic stress models have failed in complex flows. It is also 
shown that these explicit algebraic stress models can shed new light on what second- 
order closure models predict for the equilibrium states of homogeneous turbulent flows 
and can serve as a useful alternative in practical computations. 

1. Introduction 
Turbulent flows contain lengthscales and timescales that can change dramatically 

from one flow configuration to the next. Consequently, two-equation turbulence 
models - wherein transport equations are solved for two turbulent fields that are 
directly related to the lengthscales and timescales - represent the simplest level of 
Reynolds stress closure that can be formulated in a geometry independent fashion. 
This explains the current popularity of the K--F  model which, unlike the older mixing 
length models, does not require the specification of empirical lengthscales or timescales 
that must be adjusted in an ad hoc fashion from one flow to the next (see Launder & 
Spalding 1974). However, despite this positive feature, the K - e  model shares a 
common deficiency with the older mixing length models : it is based on the Boussinesq 
eddy viscosity hypothesis. It is well known that eddy viscosity models are unable to 
properly describe turbulent flows with body force effects arising from curvature or a 
system rotation, unless ad hoc adjustments are made to the model. Likewise, their 
inaccurate prediction of normal Reynolds stress differences makes eddy viscosity 
models incapable of describing secondary flows in non-circular ducts (cf. Lumley 1978; 
Launder 1990; Speziale 1991). This has led to the development of nonlinear 
stress-strain relationships in turbulence modelling that transcend the Boussinesq 
hypothesis - an area of research that has received varying degrees of attention during 
the past three decades. 

Early work on the development of turbulence models with a nonlinear stress-strain 

t Present address : Aerospace and Mechanical Engineering Department, Boston University, 
Boston, MA 02215, USA. 

3-2 



60 T, B. Gatski and C. G. Speziale 

relation tended to be empirical in nature, relying on analogies with non-Newtonian 
flows (see Rivlin 1957; Lumley 1970; Saffman 1977). The similarities between the 
laminar flow of a non-Newtonian fluid and the mean turbulent flow of a Newtonian 
fluid have long been recognized (see Hinze 1975 for an interesting discussion of this 
point). In these older empirical models, which typically were obtained by simple tensor 
invariance arguments, the Reynolds stresses were taken to be nonlinear polynomial 
functions of the mean velocity gradients. In recent years, nonlinear Reynolds stress 
models of this type have been obtained within the context of two-equation turbulence 
modelling by more formal expansion techniques incorporating, for example, the Direct 
Interaction Approximation (DIA) and the Renormalization Group (RNG) (see 
Yoshizawa 1984; Speziale 1987; Rubinstein & Barton 1990; Yakhot et al. 1992). These 
models, which are characterized by an explicit relationship between the Reynolds stress 
tensor and the mean velocity gradients (and possibly their time derivatives) have come 
to be referred to as ‘anisotropic eddy viscosity models’. 

During the 1970s, second-order closure models became popular in which closure was 
achieved based on the Reynolds stress transport equation where history and non-local 
effects are accounted for. By means of an equilibrium hypothesis, in which the 
Reynolds stress convection and transport terms were neglected, algebraic stress models 
were obtained from second-order closures (see Rodi 1976). In these models, the 
Reynolds stresses were related implicitly to the mean velocity gradients. This provided 
the first formal means, based on a higher-order closure, to justify the extension of the 
Boussinesq hypothesis to incorporate nonlinearities into the mean velocity gradients. 
However, this type of algebraic stress model is cumbersome to implement in complex 
flows since the stress-strain relation is not explicit ; numerical stiffness problems can 
result from the need for successive matrix inversions at each iteration. 

In an interesting paper that has to a large extent gone unnoticed, Pope (1975) 
developed a nonlinear Reynolds stress model by invoking the same equilibrium 
hypothesis as Rodi (1976). However, Pope (1975) actually presented a methodology for 
obtaining an explicit relation for the Reynolds stress tensor from the implicit algebraic 
stress model that Rodi (1976) obtained from the Launder, Reece & Rodi (1975) model. 
This methodology, which leads to explicit algebraic stress models, is based on the use 
of integrity bases from linear algebra. Owing to the complexity of the algebra, Pope 
(1975) was only able to obtain a solution for two-dimensional turbulent flows which 
he accomplished using the Launder, Reece & Rodi model. 

The main purpose of the present paper is to extend the results of Pope (1975) to 
three-dimensional turbulent flows in non-inertial frames starting from a more general 
hierarchy of second-order closure models - a task that is now feasible computationally 
via symbolic manipulation. The relationship between these new explicit algebraic stress 
models and anisotropic eddy viscosity models, as well as the older nonlinear Reynolds 
stress models, will be established in a systematic fashion. There appears to be 
considerable confusion in the turbulence literature concerning the relationship between 
these various types of nonlinear Reynolds stress models that needs to be clarified. It 
will be shown that the new explicit algebraic stress models represent the equilibrium 
Reynolds stress anisotropies predicted by second-order closures in homogeneous 
turbulent flows. Consequently, beyond their potential use in practical turbulence 
calculations, the explicit algebraic stress models to be derived herein can be used to 
explore the predictive capabilities of a hierarchy of second-order closures in 
homogeneous turbulence. However, when applications are made to non-equilibrium 
turbulent flows with localized strain rates that are large, there is the need for 
regularization. These issues will be discussed in more detail in the sections to follow. 
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2. Theoretical background 
The incompressible turbulent flow of a viscous fluid will be considered where the 

velocity v and kinematic pressure P are decomposed into ensemble mean and 
fluctuating parts as follows : 

v = i+u, P = P + p .  (1) 
The Reynolds stress tensor rii = 
1975): 

is a solution of the transport equation (cf. Hinze 

which is valid in an arbitrary non-inertial reference frame that can undergo a rotation 
with angular velocity Qi relative to an inertial frame. In (2), D / D t  = a/at+v.V is the 
mean convective derivative? eijk is the permutation tensor, v is the kinematic viscosity, 
and 

are, respectively, the pressure-strain correlation, the dissipation rate tensor, and the 
turbulent transport term. Turbulence models based on the Reynolds stress transport 
equation (2) are referred to as 'second-order or second-moment closures', since (2) is 
obtained by taking a second moment of the fluctuating Navier-Stokes equation. The 
advantage of basing Reynolds stress models on (2) is clear: the important physical 
effects of Reynolds stress convection and production are accounted for exactly by the 
first three terms in this equation. 

Homogeneous turbulent flows in equilibrium? as well as regions of inhomogeneous 
turbulent flows where there is a production-equals-dissipation equilibrium, satisfy the 
constraints : 

9; + vv2 Ttf  = 0, (7) 

where 

is the anisotropy tensor (K  = :G is the turbulent kinetic energy). In physical terms, 
this is an equilibrium for which convective and transport effects can be neglected; it is 
the basic equilibrium hypothesis used in the derivation of algebraic stress models. 
Although it constitutes an idealization, it is comforting to know that this equilibrium 
hypothesis is achievable in interesting physical limits that include homogeneous shear 
flow and the logarithmic region of an equilibrium turbulent boundary layer. 

It follows from (6) that 
3- Dr. .  rUDK 
Dt K D t '  

- -- (9) 
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and, hence, by making use of the contraction of (2)  and (7), we obtain 
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where 9 = - 7ij avi/axj is the turbulence production and B = $sat is the scalar turbulent 
dissipation rate. The substitution of (7) and (10) into (2) yields the following 
equilibrium form of the Reynolds stress transport equation : 

The dissipation rate tensor can be split into isotropic and deviatoric parts as follows: 

eij = + D"j. (12) 
By making use of (8) and (12), we can rearrange (11) into the alternative form 

(9 - E )  b6j = -5KStj - K(b,k Sjk + bjk Sik - :bmn S,, cS,~) 

- K[bik(6jk + 2e,kj + bjk(a$k + 2emki + in$j ( 3, 

where 

nij = @ij- DEij. (15) 
In all of the commonly used second-order closure models, ITij is modelled in the general 
form (see Lumley 1978; Reynolds 1987; Speziale 1991): 

ax1 
(16) 

auk  
I T i j  = c&j(b) + KAijkl(6)  -. 

For non-inertial frames, auk/ax, is replaced with auk/ax, + emlk 52, in (16). The 
substitution of (16) (with its non-inertial correction) into (13) yields a closed system of 
algebraic equations for the determination of the Reynolds stress anisotropy in terms of 
the mean velocity gradients. This constitutes the general form of algebraic stress 
models; the algebraic stress model of Rodi (1976) is obtained when the Launder, Reece 
& Rodi model for Z7, is introduced into (13) and non-inertial effects are neglected. It 
is clear that these algebraic stress models are implicit in nature since the Reynolds stress 
tensor appears on both sides of the equation. In the next section we will examine how 
explicit relations can be obtained from (13). Explicit models can lead to considerable 
savings in computational expense by avoiding the need for successive matrix inversions 
to obtain the Reynolds stresses for a given set of mean velocity gradients (cf. Demuren 
& Rodi 1984). 

3. Explicit algebraic stress models 
When models for nij that are tensorially linear in the anisotropy tensor b,, are 

considered, it is possible to obtain an explicit expression for b, in terms of the mean 
velocity gradients. This can be accomplished by techniques from linear algebra that 
make use of integrity bases (namely, polynomial representations for isotropic tensor 
functions). Pope (1975) was the first to show this by basing his analysis on the Launder, 
Reece & Rodi model which is the most commonly used model for nij that is a linear 
function of bij. We will extend the analysis of Pope (1975) to a more general hierarchy 
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of tensorially linear models for Uij where non-inertial effects are accounted for. 
Furthermore, our analysis will be conducted for three-dimensional turbulent flows. 
Pope (1975) restricted his analysis to two-dimensional turbulent flows because of the 
severe complexity of the algebra-an obstacle that we will overcome by using 
Mathematica- (Wolfram 1988). 

It can be shown that the most general form of (16) that is tensorially linear in the 
anisotropy tensor b, is given by (cf. Reynolds 1987; Speziale 1991): 

where R* = i 3 t * + E m j i Q m  (18) 
is the absolute vorticity tensor (namely, the vorticity tensor (sti relative to an inertial 
frame). The coefficients Cl-C, can be functions of the invariants of b,, and can depend 
on P / c  (of course, (16) requires that, at most, C, is a linear function of P / e ) .  The model 
of Launder, Reece & Rodi (1975), the model of Gibson & Launder (1978) and the 
linearized model of Speziale, Sarkar & Gatski (1991) - where the quadratic part of the 
slow pressurestrain correlation is neglected - are special cases of (17). For these 
models, we have the following coefficients: 

Launder, Reece and Rodi model 
C, = 3.0, C, =0.8, C3 = 1.75, C, = 1.31, (19) 

Cl = 3.6, C, = 0.8, C, = 1.2, C, = 1.2, (20) 

Cl = 3.4+ 1.88/~, C, = 0.8- 1.3II;", C, = 1.25, C4 = 0.40, (21) 

Gibson and Launder model 

Speziale, Sarkar and Gatski model 

where I& = bijb,. It should be noted that for sufficiently small anisotropies, more 
complicated models can be approximated by the form (17). 

The direct substitution of (17) into (13) yields the equation: 

where 

(24) 
K 

7=-. 
E 

If we introduce the dimensionless, resealed variables : 

c -2  
= (*) 2 3  b, ,  
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then (22) reduces to the simpler form 

T. B. Gatski and C. G.  Speziale 

b: = - Sz - (b,*, S:k + b,*, S,*, -$b,*, S,*, S i j )  + b& WZj + bi*, q g .  (28) 

b* = -S*-(b*S*+S*b*-g{b*S*}/)+b*W*- W*b*, (29) 

In matrix form, (28) can be written as 

where { - } denotes the trace and /denotes the unit tensor. This is a set of linear algebraic 
equations for the determination of the components of b* in terms of S* and W*; the 
solution to (29) is of the general form 

b* = f(S*, W*). (30) 
Form invariance under an orthogonal coordinate transformation (with rotation tensor 
Q) requires that 

i.e. that f be an isotropic tensor function of its arguments. It can be shown that the 
satisfaction of (31) requires that 

Qf(S*, W*) Q' = f(QS* QT, Q W Q'), (3 1) 

b* = C FA), (32) 
A 

where FA) is the integrity basis for functions of a symmetric and antisymmetric tensor 
and G(A) are scalar functions of the irreducible invariants of S* and W*. For the case 
under consideration, the integrity basis is given by (see Spencer 1971; Pope 1975): 

T'l) = S*, 
T(2) = S* W* - W*S* 

T(6) = W*'S*+S*W*2--{S*V(r*a}/, 
T(7) = W*S*W*2- W*ZS*W*, 

i ( 3 3 )  T(3) = S*2-gS*2}/, 

T(4) = w*"-w*2}/, d 
T'*' = s* w*s*2 - S*ZV(r*S* 
p =  W*2S*2+S*2W*2-2 s*2w*2 1 4 

T(5) = W*S*2 - S*aW* T(10) = W*S*2W*2 - W*2S*2W*. 

The irreducible invariants of S* and W* are: 

71 = {s*2}, (34) 
7 2  = {w*2L (35) 

q5 = (S*ZW*". (38) 

G(*) = G(*)(T~ 2 7 2,73774975) = 1 > 2 3 * * * 3  lo>* (39) 
Hence, we have 

Pope (1975) showed that for two-dimensional flows, only T(l) ,  T@) and F3), as well as 
r l  and Y,I~, are independent. Consequently, the calculations become much simpler. Here, 
we will obtain the three-dimensional solution using the same methodology that Pope 
used. 

The direct substitution of (32) into (28) yields 

X G @ )  FA) = -x&T(A)-xG(A) [T(A))s*+S*T(A)-~T(A))s*)/- T ( A ) W +  W*T(A)], 
A A A 

(40) 
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is an integrity basis 7 e where we have made use of the fact that f’)  = S*. Since 
know that 

T‘”’s*+s*T‘”’-{T’~\’s*}/ 3 = Z H , ,  p,), (41) 
Y 

(ie. any polynomial in S* and W* can be expanded in the integrity bases; see Spencer 
1971; Pope 1975). The 10 x 10 matrices HA and Jhr are obtained by successive 
applications of the Cayley-Hamilton theorem fihe elements of these matrices are given 
in the Appendix). By substituting (41) and (42) into (40), we obtain an equation from 
which G(A) can be determined: 

This is a 10 x 10 linear system of equations for the determination of the G@) which can 
be written in the matrix form 

where the components of A, G and B are given by 
A G = B  (44) 

= - - HAy + Jhy, 
G, = G‘”, 

BA = ‘1, 

(see the Appendix). The solution to (44) is given by 
= Aii  

In order to obtain a closed form expression for G(’), it is necessary to analytically invert 
the matrix A. The manual inversion of matrix A is not feasible in the light of its highly 
complex structure; however, such a mathematical computation can now be done 
symbolically by Mathematicam (Wolfram 1988). The resulting inverse matrix A-l is 
quite complex, but as noted in (48), only the first column of its elements are needed. 
The resulting solution for G(A) is: 

where the denominator D is given by 

Equations (49H50) were successfully put through a variety of consistency checks 
including numerical tests for the axisymmetric expansion and contraction. 

Unfortunately, this three-dimensional form is significantly more complex than the 
two-dimensional form derived by Pope (1975). Nevertheless, the result presented in 
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(49) can be shown to reduce to Pope’s form in the two-dimensional limit where the 
invariants q, and q4 are zero and q6 becomes equal to ill, qz. Using this reduction and 
the redundancies in the integrity basis ( F4) . , . T(l0) are linear combinations of P, T@) 
and Fs); see Pope 1975), the resulting expression for G(A) in the two-dimensional limit 
becomes 

The anisotropy tensor b* is then given by 

which can be shown to be identical to the expression in Pope (1975) after using 
(25)-(27) along with the constants (19) of the Launder, Reece & Rodi model. It should 
be noted that Pope used an alternative form for the third basis in (52) - constructed 
from the two- and three-dimensional Kronecker delta - that is directly proportional to 
our f 3 ) .  

It is now clear that the model derived by Pope (1975) (which is a special case of (52)) 
actually constitutes the explicit solution of the algebraic stress model of Rodi for b in 
terms of S and w. Whereas Pope’s analysis is only valid for two-dimensional flows in 
an inertial frame, we have now succeeded, by means of the representation theorem 
embodied in (32), to extend his result to three-dimensional flows in non-inertial frames. 
It is interesting to note that for turbulent flows subjected to purely rotational or 
irrotational strains, the three-dimensional solution is of the same tensorial form as the 
two-dimensional result (52). However, for turbulent flows where both S and W are 
non-zero, there are significant differences between the two- and three-dimensional 
solutions. The two-dimensional result has a single quadratically nonlinear coupling 
term whereas the full three-dimensional result has additional nonlinear coupling terms 
that are tensorially cubic and quartic. This could yield significantly different qualitative 
behaviour in complex turbulent flows that needs to be explored in more depth in the 
future. 

Some comments are in order concerning how the three-dimensional solution 
obtained herein compares with the result derived recently by Taulbee (1992). The three- 
dimensional result of Taulbee only contains the bases F’), 7(2), F4), T(@, T(’) where the 
coefficients G(A), for the most part, only depend on the invariant q2. This simplification 
results from the neglect of the second strain-dependent term in the brackets on the 
right-hand side of (22) (namely, it is obtained by setting C, = 2). We feel that this is 
a questionable approximation. Our research on homogeneous shear flow indicates that 
the coefficient C,-2 is non-zero and must be nearly half as large as the coefficient 
C, - 2 in order to obtain a good description of shear flows. Furthermore, by neglecting 
this term in (22), the coefficients of the solution become virtually independent of the 
strain rate Sij and the model collapses to the standard K - s  model in the absence of 
rotational strains. This stands in serious contradiction of the exact two-dimensional 
result (52) as well as our new three-dimensional result. 
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4. The regularization procedure 
The explicit algebraic stress model that we derived in (32) and (49) formally 

constitutes the equilibrium anisotropy tensor predicted by a hierarchy of second-order 
closure models for homogeneous turbulence.These second-order closures are typically 
solved in conjunction with a modelled transport equation for the turbulent dissipation 
rate that is of the general form 

where CE1, C,, and C, are either constants, or functions of the invariants of Ib, that vary 
from one model to the next. For homogeneous turbulence, the transport term on the 
right-hand side of (53) vanishes and the turbulent kinetic energy is a solution of the 
transport equation 

-- - 9 - E .  
DK 
Dt (54) 

From (53)-(54), it follows that 9 / c  achieves the equilibrium value (see Speziale 1991), 

B c -1 -=E2 
6 Ce1-1' (55)  

which will be used to determine g in homogeneous turbulence. Hence, the explicit 
algebraic stress model derived herein can be utilized to explore systematically the 
equilibrium states predicted by a hierarchy of second-order closures in homogeneous 
turbulent flows. 

As discussed earlier, the explicit algebraic stress model given by (32) and (49) 
represents an exact solution to the general implicit algebraic stress model (22) that 
includes the model of Rodi (1 976) as a special case. Consequently, by a direct analysis 
of this explicit model, new insights can be gained concerning the problems that the 
traditional algebraic stress models have had in the calculation of complex turbulent 
flows. The denominator of the coefficients G(A) given in (49) contains a sum of positive 
and negative terms which has the potential to become zero, rendering singular 
behaviour. For equilibrium homogeneous turbulence this will not happen since ql .. . q5 
are constrained by the transport equations for 71j and E to yield a well-behaved solution 
(see Speziale & Mac Giolla Mhuiris 1989). However, when an algebraic stress model 
is applied to complex non-equilibrium turbulent flows, where the underlying 
assumptions invoked in its derivation are no longer valid, singular behaviour can 
result. This becomes a distinct possibility in turbulent flows that have localized strain 
rates that are large. When the traditional algebraic stress models of the form (22) are 
applied to turbulent flows with large strain rates where D can approach zero, we would 
expect the model to be ill-behaved. This is a serious issue since in the calculation of 
many practical turbulent flows that achieve equilibrium, it is necessary to compute 
through a transient state that is far from equilibrium. Problems have been experienced 
in the calculation of complex turbulent flows where the Rodi algebraic stress model has 
at times failed to converge when solved iteratively unless the mean strain rates were 
relatively small (Demuren & Rodi 1984; Demuren, private communication). Hence, it 
is clear that there is the need to regularize these explicit algebraic stress models. Such 
an approach has been used recently in the kinetic theory with considerable success (see 
Rosenau 1989). 

The model derived herein can be regularized by a Pad6 approximation (this 
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approach was recently used by Yakhot et al. (1992) in the derivation of their RNG 
based dissipation rate equation). The main idea behind this approach can be easily 
illustrated for the two-dimensional model given in (52). For this case, the coefficient on 
the right-hand side of (52) can be rewritten as 

3 
3 -27' + 6yL' 

- - 3 
3 - 2v1 - 67' 

where 7 = (SG s;y, 6 = (w; w$. (57) 
It is clear from (56) that, for sufficiently large strain rates 7, singularities can occur; on 
the other hand, the rotational strains do not cause any problems. In an equilibrium 
homogeneous turbulent flow, 7 is typically less than one so that (56) is well behaved. 
For example, in homogeneous shear flow (with shear rate S) ,  the parameter SK/s  
achieves an equilibrium value of approximately 5 .  For the Launder, Reece & Rodi 
model, this corresponds to 7 M 0.2 (see Speziale & Mac Giolla Mhuiris 1989). 
However, for purely strained turbulent flows where 7 > 1, (56) can become singular. 
While algebraic stress models do not formally apply to such flows since they are far 
from equilibrium, it is nevertheless important for the models to be computable through 
such a transient (or localized) state without causing the solution to diverge. Hence, we 
want to replace (56) with a regular function that, for 7 sufficiently less than one, is 
approximately the same. This can be accomplished by a Padk-type approximation. For 
example, to the first order we take 

Substituting (58) into (56) then yields the expression 

which is regular. Hence, we obtain a regularized model that is well-behaved for all 
strain rates and constitutes a good approximation to the original model within the 
equilibrium range that it formally applies. For practical applications, the regularized 
model, 

should be used instead of the form (52) first derived by Pope (1975) for the special case 
of the Launder, Reece & Rodi model. For the three-dimensional case, a more 
systematic Pad6 approximation to (50) must be made. This leads to rather cumbersome 
expressions that require further simplification and are currently under investigation. 

5. Comparison with other nonlinear Reynolds stress models 
We will now show the relationship between the explicit algebraic stress model 

derived herein and existing anisotropic eddy viscosity models. It is clear that (32), with 
the coefficients (49), is of the general mathematical form 
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where (auklax,)* = S,*,+ W,*, and Aiikl is a fourth-rank tensor that is a function of S* 
and W .  This constitutes the general form of anisotropic eddy viscosity models; the 
standard eddy viscosity hypothesis of Boussinesq is recovered in the limit as Aijk, 
becomes an isotropic tensor. 

Our explicit algebraic stress model for three-dimensional turbulent flows is 
tensorially quartic in the mean velocity gradients with coefficients that are ratios of 
polynomials in the invariants of S and W. We will make use of the fact that 

r u . . = tKS,  + 2a, Kb;, 

b* 41 = -S* ii 

(62) 
where a1 = (C2-$)/(C3-2). The normalized anisotropy tensor b* can then be 
expanded in a Taylor series. To the first order in the mean velocity gradients, we have 

(63) 
from the algebraic stress model (32) and (49). The direct substitution of (63) into (62), 
after making use of (25), yields 

(64) 
K2 - 

Ti* = ;Kaij - 2C: - Sip 
E 

where Cz = &($- C,). This is the eddy viscosity form of the standard K- c model (see 
Launder & Spalding 1974) with a coefficient C: that, for the second-order closures 
considered herein, is close to the traditional value of 0.09. When quadratic terms are 
maintained, we have 

b: = - S$ - (S; Wc. + S$ W,*,) + 2 (S; Sz.-$S:, S:n Ssj), (65) 
which, in an inertial frame, yields 

where p1 = g ( 2  - C,) (2- C,) and /3, = g2(2 - C,) ($ - C2), This is identical in form to 
the nonlinear K-E model of Speziale (1987) when convective effects are neglected. The 
nonlinear K- E model is given by 

K2 - K3 0 0 K3 - - 
Tii = QKaii - 2c,- sii - 4 c ~  c;1” g2 (ssj -isrnrn a,,) - 4 c  c2 2 ( s i k  SIC* -isrnn srnn st,), E P &  

(67) 
where C, and C, are constants and 

is the Oldroyd derivative of S. When DS,/Dt is neglected, it is a simple matter to show 
that (67) is of the same form as (66). 

Equation (66) is also of the same form as the anisotropic eddy viscosity models of 
Yoshizawa (1984) and Rubinstein & Barton (1990) with one exception: it does not 
contain a term of the type 

3 

(69) 
K - -  

p 3  7 wkj -$ma wrnn 

This kind of term was eliminated by Speziale (1987) because it yields an erroneous 
prediction for isotropic turbulence subjected to a solid body rotation. More precisely, 
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a term of the form (69) predicts that an initially isotropic turbulence develops Reynolds 
stress anisotropies when subjected to a solid body rotation-a result that is in 
contradiction of physical and numerical experiments (see Wigeland & Nagib 1978; 
Speziale, Mansour & Rogallo 1987). It is encouraging that this consistency constraint, 
concerning the vanishing of (69) to the second order in the mean velocity gradients, has 
now been obtained directly by a systematic analysis of the Reynolds stress transport 
equation. 

It is interesting to note that the quadratic approximation (66) to the three- 
dimensional algebraic stress model is of the same tensorial form as the full nonlinear 
two-dimensional model (60). However, owing to the fact that the coefficients in (60) are 
strain-dependent, more physics is accounted for. For example, (60) properly predicts 
that in a rapidly rotating frame - where SZ, and hence c, tends to infinity - b$ and 9 
go to zero. This is the restabilization effect of turbulence in a rapidly rotating frame 
that the usual anisotropic eddy viscosity models are unable to predict (see Speziale, 
Gatski & Mac Giolla Mhuiris 1990). Hence, we feel that the two-dimensional algebraic 
stress model (60) should be tried in the future as an alternative to the more commonly 
used quadratic anisotropic eddy viscosity models. Some applications of (60) will be 
considered in the next section. 

6. Illustrative examples 
In order to demonstrate the efficacy of the regularized algebraic stress model (60) 

derived in this study, we will consider a few applications to non-trivial, two- 
dimensional turbulent flows involving shear and rotation. We will base our calculations 
on the Speziale et al. (1991) second-order closure (hereinafter, referred to as the SSG 
model). The regularized algebraic stress model (60) can be rewritten in the form 

where 01, = (C2-$)/(C3--2) and S*, W*,7 and 5 are as defined in (25), (26) and (57). 
Some remarks are needed concerning how S / e  and Z4 are evaluated in the model 
coefficients (21) for the SSG model. 9 / e  is calculated using (55) which is formally valid 
for equilibrium homogeneous turbulent flows ; we take IIb M 0.1 1 which is the universal 
equilibrium value predicted by the SSG model for two-dimensional homogeneous 
turbulence. This yields the following choice of constants 

C, = 6.80, C, = 0.36, C, = 1.25, C, = 0.40, g = 0.233, (71) 
for the explicit algebraic stress model corresponding to the SSG second-order closure. 

The explicit algebraic stress model (70) is solved in conjunction with modelled 
transport equations for K and E .  These equations are of the same general form as those 
used in the K- E model and are given by: 

where vT = C,K2/e, C, = 0.09, crK = 1, we = 1.3, C,, = 1.44 and CE2 = 1.83. Hence, 
the explicit algebraic stress model derived herein formally constitutes a two-equation 
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z 

FIGURE 1. Schematic of homogeneous shear flow in a rotating frame. 

Equilibrium Standard New ASM Experimental 
values K - s  model model SSG model data 
b l l  0 0.204 0.218 0.20 
bl, -0.217 -0.157 -0.163 -0.15 
4 2  0 -0.149 -0.146 -0.14 
4 8  0 -0.055 - 0.072 -0.06 
SKI6 4.82 6.02 5.16 6.0 

TABLE 1. Comparison of the model predictions with the experimental equilibrium values in 
homogeneous shear flow measured by Tavoularis & Corrsin (1981). 

turbulence model; the K - c  model is recovered when (70) is linearized with respect to 
the mean velocity gradients. While this explicit algebraic stress model is a two-equation 
model, it incorporates much more physics than the K--E  model since it is consistent 
with second-order closures in the limit of equilibrium homogeneous turbulent flows. 

The first example that we will consider is the case of homogeneous shear flow in a 
rotating frame. An initially decaying isotropic turbulence is, at time t = 0, subjected to 
a uniform shear rate S in a reference frame rotating steadily with angular velocity 9. 
The corresponding mean velocity gradient tensor is given by 

%=(o o s o  0 "), 
j 0 0 0 

(74) 

and the angular velocity of the reference frame is given by 9, = (0, 0,O) (see figure 1). 
In table 1, the equilibrium values predicted by the new explicit algebraic stress model 
(ASM) for homogeneous shear flow are compared with the experimental data of 
Tavoularis & Corrsin (1981) as well as with the predictions of the SSG model and the 
standard K--E model. From these results it is clear that: (a) the new explicit ASM 
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FIGURE 2. Time evolution of the turbulent kinetic energy in rotating homogeneous shear flow: 
Comparison of the model predictions with the large-eddy simulations of Bardina et al. (1983). (a) 
Sa/S = 0, (b) Q/S = 0.5 and (c) Q/S = -0.5. -, new explicit ASM; ---, SSG model; ----, K--E  
model; 0, LES. 

performs far better than the standard K- E model, and (b) the new explicit ASM yields 
results in close proximity of the full SSG second-order closure model. The small 
differences between the new ASM model and the full SSG model arises from two 
sources: the neglect of the quadratic return to isotropy term and the PadC-type 
approximation that was implemented to regularize the model. However, it is clear from 
these results that the new regularized ASM model constitutes an excellent 
approximation to the full SSG model for equilibrium flows. 

Now, we will compare the predictions of these three models for the time-evolution 
of the turbulent kinetic energy (K* = K/K,, t* 3 St) with the large-eddy simulations 
(LES) of Bardina, Ferziger & Reynolds (1983) for rotating homogeneous shear flow. 
In figure 2, the model predictions for three rotation rates (Q/S  = 0, B/S = 0.5 and 
B/S = -0.5) are compared with the LES which is for an initial condition of eO/SKO = 
0.296. From these results it is clear that the new algebraic stress model does an 
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FIGURE 3. Time evolution of the turbulent kinetic energy in rotating homogeneous shear flow: 
(a) large-eddy simulations of Bardina et al. (1983), (b) new explicit algebraic stress model, and 
(c) standard K--B model. 

excellent job in capturing the trends of the LES. It yields results that are far superior 
to the standard K - E  model and are in close proximity to the SSG model. The main 
discernible difference between the new algebraic stress model and the SSG second- 
order closure is during the early transient where its responds more abruptly to the 
application of the shear since it does not account directly for relaxation effects. 
However, it is important to note how the new ASM is far superior to the standard K -  E 
model in responding to changes in the rotation rate. This is illustrated in figure 3, where 
it can be seen that the new algebraic stress model is able to capture the effect of 
rotations on homogeneous shear flow. In contrast to these results, the standard K - E  
erroneously yields the same results for all rotation rates-a deficiency tied to the 
Boussinesq eddy viscosity hypothesis. 

The last example that we will consider is the case of fully-developed turbulent 
channel flow subjected to a spanwise rotation with constant angular velocity i2 (see 
figure 4). This represents a non-trivial turbulent flow for which the standard algebraic 
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FIGURE 4. Schematic of fully-developed turbulent channel flow in a rotating frame. 
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FIGURE 5. Comparison of the model predictions for the mean velocity profile (-) with the 
experimental data of Johnston et al. (1972) (0) for rotating channel flow (Re = 11  500, Ro = 0.21) : (a) 
SSG second-order closure (taken from Speziale et ul. 1992) and (b) new explicit algebraic stress model. 

stress approximations do not rigorously apply. We will consider the experimental test 
case of Johnston, Halleen & Lezius (1972) for a Reynolds number Re = 11 500 and a 
rotation number Ro = 0.21 (here, Re = U,H/v and Ro = QH/U, where U, is the bulk 
mean velocity). In figure 5 (a) the prediction for the mean velocity profile obtained from 
the SSG second-order closure by Speziale, So & Younis (1992) is compared with the 
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experimental data of Johnston et al. (1972). The computations were done using law 
of the wall boundary conditions. In figure 5 (b), the same comparisons are made for the 
new explicit algebraic stress model (70) derived herein. It is clear from these results that 
the new ASM yields an asymmetric mean velocity profile that is very similar to that 
obtained from the full second-order closure. Owing to the use of wall functions that do 
not formally apply to rotating flows-as well as the neglect of roll instabilities (see 
Speziale et al. 1992) - the specific quantitative comparisons are not that good. The 
important point, however, is that the new algebraic stress model yields an asymmetric 
mean velocity profile in close proximity to that obtained from a full second-order 
closure. On the other hand, simpler two-equation models like the standard K - s  model 
erroneously predict that the mean velocity profile is unaffected by a system rotation 
and remains symmetric (see Speziale 1991). The improved predictions of the new 
explicit ASM in rotating shear flows arises from the incorporation of rotational strains 
through the terms W* and c. 

7. Conclusion 
Explicit algebraic stress models for two- and three-dimensional turbulent flows, in 

non-inertial frames, have been obtained for a hierarchy of second-order closure models 
that are tensorially linear in the Reynolds stress anisotropy . These models were 
obtained using the standard local equilibrium hypothesis and, therefore, constitute the 
explicit solution to the traditional algebraic stress models generalized to include non- 
inertial effects and a range of pressure-strain models. They also formally represent the 
equilibrium states predicted by this hierarchy of second-order closures in homogeneous 
turbulent flows. A direct examination of these explicit models has shed new light on the 
limitations of the traditional algebraic stress models in applications to complex 
turbulent flows. For localized strain rates that are large, traditional algebraic stress 
models can become singular. These models need to be regularized - a task that can be 
achieved by means of a Pad6 approximation as demonstrated in this paper. 

The results of this study have presented the first definitive evidence as to why the 
traditional algebraic stress models are ill-behaved, yielding numerical problems in 
many applications. These models should eventually be abandoned in favour of 
regularized versions of the explicit algebraic stress models derived herein. The full 
three-dimensional form of the explicit models is rather complicated and work is 
underway to simplify them by means of a rational approximation procedure. However, 
in the mean time, the regularized two-dimensional form (70) can be used in practical 
applications. This simplified model is formally valid for two-dimensional equilibrium 
flows and collapses to the recently proposed anisotropic eddy viscosity models in the 
limit of small strain rates. However, while its general tensorial form is as simple as the 
commonly used anisotropic eddy viscosity models, it incorporates much more physics 
since the coefficients depend nonlinearly on both rotational and irrotational strains. A 
version of (70) based on the SSG second-order closure was applied to rotating shear 
flows herein with encouraging results. These developments, when combined with some 
recent improvements in the modelling of the turbulent dissipation rate, can lead to a 
new generation of two-equation models that can serve as a useful companion to 
second-order closures in the calculation of complex turbulent flows. 

The authors are indebted to Professor G. F. Smith (Lehigh University) for some 
helpful comments concerning tensor representation theorems, and to Dr B. A. Younis 
(City University, London) for his assistance with the rotating channel flow calculations. 
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H y A  = 

Appendix 
The elements of the matrices H,, and + are given in terms of qr as 

' 0  
0 

i71 
- $72 

%4 

0 

0 
0 

-+?I5 

- 0  - 

4A = 

0 2 0 0 0  0 0 0 0 -  
0 0 0 - 1 0  0 0 0 0  
0 0 0 0 0  0 0 0 0  
0 0 0 0 1  0 0 0 0  

- f7l 0 0 0 0  0 1 0 0  
0 27, Vl 0 0 0 0 -1 0 

- 7 4  0 0 7 , o  0 0 0 - 2  
i73 0 0 0 0  0 0 0 0  
0 7 4  +?I3 0 $71 0 0 0 0 

b5-blVZ $74 -$71 $72 o *  - 0 1 0  0 

0 0 0  0 
0 0 0  0 

0 

- 72 0 0  0 

0 0 72 271 
0 k, 0 
7; 0 0  - 274 

21/5-7172 0 -274 0 
0 0 0  0 

- 0 0 7; 27172-275 

0 0 0 0 0 0  
0 3 0 0 0 0  

-1 0 0 0  0 0 
0 0 0 0 0 0  
0 0 0 0 - 3 0  
0 0 - 1 0  0 0 

: -V:z : : : :] 
-k2 0 0 0 0 -1 

0 0 0 0 -27, 0 

The elements of the matrix A are a linear combination of the elements of the matrices 
HYA and Jyh, as well as the identity matrix. The matrix structure is then given by 

A =  

'-' ' -' 
A31 -' A313 -' 
0 4, A53 0 -1 0 A57 0 4 9  A510 

0 0 0 A,, 0 -1 A,, A,, A,, 0 
0 0 0 0 0 A,, -1 0 0 A,,, 
0 0 0 0 A,, 0 0 -1 0 A,,, 
0 0 0 0 A,, A,, 0 0 -1 A,,, 

- 0 0 0 0 0 0 A,,, 0 Alas - 1  
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B =  

with the non-zero elements determined from 

0 
0 
0 
0 
0 
0 
0 
0 

-0. 

A ,  = - 8AY - HAy + Jny< 
The vector B is given by rf 
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